skip to main content


Search for: All records

Creators/Authors contains: "Guzelturk, Burak"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Development of new host materials containing heavy elements for radiation detection is highly desirable. In this work, dibarium octafluorohafnate, Ba 2 HfF 8 , doped with rare-earth ions, was synthesized as cube-shaped nanocrystals via a facile hydrothermal method. The host lattice contains two Ba 2+ crystallographic sites, and dopants on these sites exhibit site-dependent photoluminescence (PL), cathodoluminescence (CL) and X-ray excited radioluminescence (RL) characteristics. Single doping contents were optimized as 25 mol% Tb 3+ and 5 mol% Eu 3+ . In Ba 2 HfF 8 :Tb 3+ –Eu 3+ codoped nanocrystals, preferrable occupation of Eu 3+ and Tb 3+ at two different Ba 2+ sites in the host lattice was observed. The nanocubes exhibited enhanced emissions over micron sized particles. In PL, the presence of Tb 3+ ions significantly enhanced the emission intensity of Eu 3+ ions due to energy transfer from the Tb 3+ to Eu 3+ ions, while under high-energy irradiation in CL or RL, Tb 3+ emission was intensified. X-ray induced RL with afterglow in seconds was observed. It was found that the codoped sample showed higher sensitivity than the singly doped sample, indicating that codoping is an effective strategy to develop a scintillator with this host structure for high-energy radiation detection. 
    more » « less
  2. Abstract

    Compared to halides Cs2HfX6(X = Cl, Br, I) with a vacancy‐ordered cubic double perovskite structure, the halide Cs2HfF6(CHF), with a hexagonal Bravais lattice, possesses a higher mass density and chemical stability for radiation detection. Luminescence properties and energy transfer mechanisms of rare‐earths‐doped CHF materials are studied here. The structure of CHF is identified as a new type of vacancy‐ordered hexagonal perovskite, with the same type of building blocks of the double perovskite but stacked with single layers. Density‐functional theory calculations reveal a large bandgap of CHF. A broad emission is observed from the pristine CHF host, which is suggested to be associated with self‐trapped excitons (STEs). A series of rare‐earths‐doped materials are designed utilizing the STE emissions, and efficient energy transfers from STEs and Tb3+to Eu3+are achieved for tunable emissions. The codoped material shows stable emission under X‐ray irradiation, with 10.2% reduction from its initial emission intensity, associated with possible structural evolution by radiation‐induced deformation of the soft host. The radiation responses of singly and codoped materials are evaluated, and the codoped material is found to be more sensitive to the radiation energy than the singly doped or pristine CHF for radiation detection.

     
    more » « less
  3. Abstract

    Unusual photophysical properties of organic–inorganic hybrid perovskites have not only enabled exceptional performance in optoelectronic devices, but also led to debates on the nature of charge carriers in these materials. This study makes the first observation of intense terahertz (THz) emission from the hybrid perovskite methylammonium lead iodide (CH3NH3PbI3) following photoexcitation, enabling an ultrafast probe of charge separation, hot‐carrier transport, and carrier–lattice coupling under 1‐sun‐equivalent illumination conditions. Using this approach, the initial charge separation/transport in the hybrid perovskites is shown to be driven by diffusion and not by surface fields or intrinsic ferroelectricity. Diffusivities of the hot and band‐edge carriers along the surface normal direction are calculated by analyzing the emitted THz transients, with direct implications for hot‐carrier device applications. Furthermore, photogenerated carriers are found to drive coherent terahertz‐frequency lattice distortions, associated with reorganizations of the lead‐iodide octahedra as well as coupled vibrations of the organic and inorganic sublattices. This strong and coherent carrier–lattice coupling is resolved on femtosecond timescales and found to be important both for resonant and far‐above‐gap photoexcitation. This study indicates that ultrafast lattice distortions play a key role in the initial processes associated with charge transport.

     
    more » « less